
International Journal of Scientific & Engineering Research Volume 10, Issue 10, October-2019                                                             1432 
ISSN 2229-5518  

IJSER © 2019 

http://www.ijser.org 

SIMULATION OF VISCOUS DISSIPATION 
ON FULLY DEVELOPED HEAT 

TRANSFER IN A POWER-LAW FLUID 
FLOW BETWEEN PARALLEL PLATES 

CHANNEL WITH CONSTANT HEAT FLUX 
Uwaezuoke, M. U. 

Department of Mathematics, Imo State University, P.M.B. 2000, Owerri, Nigeria 

ABSTRACT 

Laminar forced convection heat transfer in a non-Newtonian fluid flow in a channel between 
two parallel plates has been investigated analytically. Fully developed laminar velocity 
distributions obtained by a power-law fluid rheology model were used, and viscous dissipation 
was taken into account. The theoretical analysis of the heat transfer is performed under a 
constant heat flux case. An important feature of this approach is that it permits an arbitrary 
distribution of the surrounding medium temperature and an arbitrary velocity distribution of 
the fluid. These techniques were verified by a comparison with the existing results. The effects 
of the Brinkman number and rheological properties on the distribution of the local Nusselt 
number have been studied. It is shown that the Nusselt number strongly depends on the value 
of power law index. The Nusselt number sharply decreases in the range of 0 0.1n  . 
However, for 0.5n  , the Nusselt number decreases monotonically with the increasing n , and 
for 1n  , the values of Nusselt number approach a constant value. 

Keywords: Viscous dissipation, power law fluid, Nusselt number, Brinkman number, heat 

transfer. 

NOMENCLETURE 

B  vertical distance between the two stationary plates, m   

Br  Brinkman number  1 1n n

m w cmu b k T T       

pc  Specific heat  1 1Jkg K   

h  Local heat transfer coefficient  2/ .W m K  
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n  Power-law model parameter  . nPa s  

Nu  Local Nusselt number 2 /hb k  

T  Fluid temperature K  

u  Axial fluid velocity  /m s  

mu  Mean axial fluid velocity  /m s  

Pe  Peclet number 2 /mu b   

wq  Constant heat flux  2/W m  

x  Horizontal coordinate  m  

y  Vertical coordinate  m  

GREEK SYMBOLS 

  Dimensionless horizontal coordinate  2/ .mx u b   

k  Thermal conductivity  /W mK  

  Dimensionless fluid temperature    /w w cT T T T    

  Dimensionless velocity / mu u  

  Thermal diffusivity  2 /m s  

  Fluid density  3kgm  

yx  Shear stress  2/Pa m  

  Dimensionless vertical coordinate /y b  

SUBSCRIPTS 

b  Bulk 

c  Centerline 

w  Wall 
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1. INTRODUCTION 

An understanding of convection heat transfer in non-Newtonian fluids between two parallel 

plates is crucial to the design of several types of thermal equipments. From this viewpoint, heat 

transfer problems of this type have been investigated by a number of researchers (Ou, Cheng, 

1973), (Basu, and Roy, 1985), (Barletta, and Zanchini, 1997).The problem pertaining to the 

derivation of the local Nusselt number in the thermal region when an incompressible fluid flows 

through a pipe with a fully developed velocity distribution is of particular interest; this problem 

is referred to as the Graetz problem. It has attracted the interest of not only engineers but also 

applied mathematicians because of the difficulties involved in deriving its solution. The original 

Graetz problem, which was first analytically solved by Graetz, therefore it is important to refer 

to the classical Graetz–Nusselt problem in single phase flow that neglects the effects of axial 

heat conduction, viscous dissipation, and thermal energy sources within the fluid. It is regarded 

as one of the most important solutions in the heat transfer science and it governs forced 

convection heat transfer for fluid with known velocity profile and involves finding of the heat 

transfer rate in a fully developed flow of fluid flowing inside conduit of various cross sectional 

geometries with constant heat flux or constant wall temperature mode of heating. This type of 

solution allows temperature profile to be calculated from the coupled equations of motion and 

energy (Kays, and Crawford, 1993). A comprehensive analytically studies for the fully developed 

power-law fluid flowing in a circular tube for both uniform wall heat flux and wall temperature 

has been done (Abdulmohsin, and Abid, 2002) but the authors neglected the effects of viscous 

dissipation. They showed that the value of Nusselt number for a power-law fluid within uniform 

heat flux is given by: 

  
2

8 8 1 4 1

31 13 1

n n
Nu

n n

 


 
         (1) 

Where n  is the power-law index. For Newtonian fluid, i.e. for 1n   , Eqn. (1) yields the 

well known result as: 

8 .Nu const            (2) 
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Where this result in Eqn. (2) was confirmed by many number of authors (Lin, et al., 1983), 

(Rohsenow, et al., 1985). However, the Graetz problem has been extended over problems that 

focus on turbulent flows, non-Newtonian flows, forced convection in a porous medium, and the 

effects of viscous dissipation for Newtonian fluid and that include effects of heat conduction 

(Dang, 1983), (Liou, and Wang, 1990), (Lawal, and Mujumdar, 1992) ,(Zanchini, 1997), 

(Lahjomri,et al., 2003), (Nield, et al., 2003) and (Aydin, 2005), (Aydin, and Avci, 2006), (Fransica, 

and Tso, 2012), (Hung, and Tso, 2009), (Ramiar, and Ranjbar, 2011), (Kundu, and Lee, 2013), 

(Uwaezuoke, and Oyesanya, 2019). In all the works cited above there is no studied related to 

the effects of viscous dissipation on heat transfer with non-Newtonian fluid. 

Therefore, the objectives of this study is to mathematically solve the forced convection heat 

transfer problem between two stationary plates subjected to constant heat flux for fully 

developed region, which is a type of Graetz problem, and derive completely analytical solutions 

for the fluid temperature profile and local Nusselt number. Since the present study focuses on 

heat transfer with a sufficiently large Peclet number  Pe , the axial heat conduction is 

considered negligible. However, viscous dissipation is taken into account. Numerical 

calculations are performed to demonstrate the effects of the Brinkman number  Br and 

rheological properties on the distribution of the local Nusselt number. 

2. MATHEMATICAL MODEL AND FORMULATION 

Figure 1 shows the physical model and coordinate system. A non-Newtonian fluid with fully 

developed velocity profile  u y  flows between two rectangular stationary plates of a  part b . 

The plates are convectively heated or cooled by the surrounding medium of constant heat flux 

wq . 
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Figure 1: Notations and axes of the problem. 

According to the type of fluid flowing between the paralleled plates, a power-law fluid, which 

can approximate the non-Newtonian viscosity of many types of fluids with good accuracy over a 

wide range of shear rates, is considered here. The shear stress  xy  acting on the viscous fluid 

is given by the formula (Bird et al., 2002): 

1n

xy

du du
m

dy dy




           (3) 

Where m and n are the power-law model parameter and index, respectively. Depending on 

power law index  n ; there are three cases as: 

a. 1n   indicates that the fluid is a pseudo-plastic fluid, 

b. 1n  indicates that the fluid is equivalent to a Newtonian fluid, and 

c. 1n   Indicates that the fluid is a dilatants fluid. 

As stated earlier, the fully developed velocity distribution is derived in terms of mean velocity 

 mu   as follows (Bird, B., Stewart, E., and Lightfoot, N., 2002): 

 
1

3 1
1

1

n

n

m

u y n y

u n b

 
     

   
 

         (4) 

Where  mu  is the mean velocity. 

By coupling Eqn. (3) with Eqn. (4), the shear stress for non-Newtonian power-law can be 

expressed by: 
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1

3 1

n

n
m

xy

u n y
m

b n b


 
            

 

        (5) 

In order to illustrate the solution technique without complicating analytical procedure further, 

a number of simplifying assumptions are made for the simplified of the basic equation as: 

1. The flow mode is laminar, steady and axial symmetry. 

2. The fluid physical properties are independent of temperature and pressure, 

3. The axial heat conduction is negligible relative to vertical heat conduction, 

4. The natural convection effects are neglected 

In this case, the steady-state heat balance taking viscous dissipation into account is expressed 

as follows: 

 p xy

T T du
k c u y

y y dx dy
 

      
     

      
       (6) 

Where  , c  and k  are the density, specific heat and thermal conductivity, respectively. In 

addition, the second term on the right-hand side is the viscous dissipation term effects. 

In order to avoid difficulties of definitions the heat transfer and to simplify the mathematical 

treatments, three modified boundary conditions are proposed and employed for special 

process requirements as: 

At center; by applying constant centerline temperature gives: 

Boundary condition 1  at 0y    cT T        (7) 

By symmetry, there can be no heat flux across the centerline in the rectangular; this case 

means that the vertical temperature gradient is zero, therefore: 

Boundary condition 2  at 0y    0
T

y





     (8) 
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At wall; the identified temperature gives the third boundary condition: 

Boundary condition 3  at y b   wT T       (9) 

Now, substituting the velocity profile, Eqn. (4), into energy balance Eqn. (6) yields; 

1 1
11

3 1 3 1
1

1

n n
nn

n n
m mu uT n y T m n y

y n b x k n b b

 
 

                                              
 

   (10) 

Where   is thermal diffusivity and defined by: 

p

k

c



            (11) 

Generally, one tries to select dimensionless quantities so as to minimize the number of 

parameter in the final problem formulation and that is useful in scale-up problems by 

introducing the following dimensionless variables: 

 

;
2

w

w c

y x

b bPe

T T y

T T

 




  




 
  
 

          (12) 

Substitution of Eqn. (12) into Eq. (10) yields a dimensionless partial differential equation as: 

11 1
1 3 1 3 1

1
4 1

nn n

n n
n n

Br
n n

 
 

  

            
         

          
     (13) 

Where the Brinkman number  Br  is defined by: 

 

1

1

n

n

w c

mu
Br

kb T T




 


          (14) 

and the Peclet number  Pe  is given by : 

IJSER

http://www.ijser.org/


International Journal of Scientific & Engineering Research Volume 10, Issue 10, October-2019                                                             1439 
ISSN 2229-5518  

IJSER © 2019 

http://www.ijser.org 

2 mu b
Pe


            (15) 

Based on these new parameters and Eqns. (7), (8) and (9), the dimensionless boundary 

conditions becomes as: 

Boundary condition 1  at 0    1         (16) 

Boundary condition 2  at 0    0
d

d




      (17) 

Boundary condition 3  at 1    0        (18) 

Generally for the case of constant heat flux, radial temperature profiles are well stabilized; so 

that  ,    is a function of dimensional vertical coordinate    alone, the constancy of the 

flux implies that: 

0A








           (19) 

Where 0A  is a constant; substituting Eqn. (19) into Eqn. (13) yields an ordinary differential 

equation, as: 

11 1

0 3 1 3 1
1

4 1

nn n

n n
Ad d n n

Br
d d n n


 

 

        
       

      
     (20) 

Lets introduce new other simplified parameters as: 

1
3 1

n
n

N Br
n


 

  
 

          (21) 

0
0

3 1

4 1

A n
C

n

 
  

 
          (22) 

and 
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1n

n



            (23) 

Now, substituting Eqns. (21), (22) and (23), into Eqn. (20) yields; 

 0 1
d d

C N
d d

 
 

 

 
   

 
        (24) 

This separable differential equation can be directly integrated twice with respect to 

dimensionless vertical coordinate   ; the results give temperature profile between two 

parallel plates as follows: 

 
   

2 2 2

0 1 22 2

1 1
ln

4 2 2

N
C C C      

 

 
 

     
   

    (25) 

in which 1C  and 2C  are constants of integration. These two constants can be evaluated from 

the first two boundary conditions Eqn. (16) and Eqn. (17) and by utilizing of Eqn. (25), as: 

1 0C  and 2 1C            (26) 

These two expressions of integration constants can be inserted into Eqn. (25) and rearranged to 

give the dimensionless temperature profile as follows: 

 
   

2 2 2

0 2 2

1 1
1

4 2 2

N
C      

 

 
 

    
   

     (27) 

Based on the third boundary condition, Eqn. (18), with Eqn. (27), one can find parameter 

  
  

2

0 2

2
4

4 2

N
C





  
 
    

         (28) 

When substitution for 0C  into Eqn. (27), the local temperature distribution becomes as: 
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 
 

 
0 2 20

2
1

42

N C C   



   

         

       (29) 

In another form: 

   
3 1

2

0

2
1

43 1

n

n
w o

w c

T T y N C Cy y

T T b bn

n


 
 

                    
  
  

      (30) 

This equation represents the temperature profile for power-law fluid between two parallel 

plates with viscous effects under the effect of constant heat flux. 

In fully-developed flow, it is usual to utilize the bulk temperature (mean fluid temperature), bT , 

rather than the center-line temperature when defining the Nusselt number. This mean or bulk 

temperature is given by (Bird, B., Stewart, E., and Lightfoot, N., 2002): 

   

 

0

0

b

p

b b

p

c T y u y dy

T

c u y dy










         (31) 

In dimensionless form of bulk temperature  b , Eqn. (31) becomes: 

   

 

1

0

1

0

b

d

d

    



  






          (32) 

Where   the dimensionless velocity profile and is defined as: 

m

u

u
   (33) 
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By substitution velocity and temperature profiles Eqns. (4) and Eqn. (29) into Eqn. (32) 

becomes: 

 

 
 

 

1

2 20 0

2

0

1

0

1 1
42

1

b

N C C
d

d

 



   




  


     
              









     (34) 

Taking the generality of the analysis into account, this equation, Eqn. (34), can be readily 

integrated to obtain the dimensionless forms of bulk temperature as follows: 

 

   

 

 
0 02 2

1
2 3 2 3 8 4

b

N C C 


   

    
            

      (35) 

According to the axes that shown in Figure 1, the local heat transfer coefficient between two 

plates is normally defined by: he local heat transfer 

 w w b

y b

dT
q h T T k

dy


            (36) 

According to the definition the local Nusselt number  Nu  is given by: 

 

2
y b

w b

dT
b

dyhB
Nu

k T T


 


         

 (37) 

Based on dimensionless parameters, the local Nusselt number  Nu  can be expressed by: 

 
1

2
w b

d

d
Nu







 





          (38) 
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Where w  is the dimensionless wall temperatures, which could be evaluated by 
1w 

 


 , 

therefore when substitution in Eqn. (29), the results could be as: 

 

 
0 0

21
1

42
w

N C C


 




   
      

   

       (39) 

In addition, from Eqn. (29), the temperature gradient at wall 
1

d

d







 
 
 
 

 is given as: 

 

 
0

1

2

2 2

N Cd

d




 






          (40) 

By substitution the Eqns. (35), (39) and (40) into Eqn. (38) and simplified the results, the final 

results of Nusselt number  Nu  can be evaluated and expressed as: 

  

1
2

131 13 1 3 1
2

8 8 1 4 1

n

nn n n
Nu Br

n n n




    

   
     

      (41) 

This equation represents the Nusselt number for power-law fluid between two stationary 

plates with viscous effects under the effect of constant heat flux for fully developed laminar 

flow. 

3. RESULTS AND DISCUSSION 

In the absence of viscous dissipation  0Br  the solution is independent of whether there is 

wall heating or cooling. However, viscous dissipation always contributes to internal heating of 

the fluid; hence the solution will differ according to the process taking place. The Brinkman 

number  Br  is chosen as a criterion which shows the relative importance of viscous 

dissipation. For brevity and standing in a reasonable range, 1 1Br   . Where positive values 

of Br  correspond to wall heating ( w cT T  and 0Br  ) case that means heat is being supplied 
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across the walls into the fluid, while the opposite is true for negative values of Br , that means 

wall cooling cases ( w cT T  and 0Br  ). 

As stated earlier that the thermal boundary conditions have been considered for the plates wall 

as constant heat flux. For this boundary condition both wall heating or wall cooling cases are 

examined and treated separately. 

Figures 2a, b and c shows the temperature profiles made dimensionless using this scale for wall 

heating, no viscous dissipation and wall cooling cases, respectively, where these profiles based 

on Eqn. (29). These plots make clear the aforementioned effects of increased dissipation. As 

expected, increasing dissipation increases the bulk temperature of the fluid due to internal 

heating of the fluid. For the wall heating case, this increase in the fluid temperature decreases 

the temperature difference between the wall and the fluid, as will be shown later, which is 

followed with a decrease in heat transfer. When wall cooling is applied, due to the internal 

heating effect of the viscous dissipation on the fluid temperature profile, temperature 

difference is increased with the increasing Brinkman number  Br . In fact, wall cooling is 

applied to reduce the bulk temperature of the fluid, while the effect of the viscous dissipation is 

increasing the bulk temperature of the fluid. Therefore, the amount of viscous dissipation may 

change the overall heat balance. When the Brinkman number exceeds a certain limiting value, 

the heat generated internally by viscous dissipation process will overcome the effect of wall 

cooling. 
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Figure 2: Effects of power law index on dimensionless fluid temperature profiles for: (a) heating 

wall  1.0Br   , (b) no viscous dissipation  0.0Br  , and (c) cooling wall  1.0Br  . 

Figure 3 represents the variation of Nusselt number with the rheological properties (power-law 

index) for constant heat flux case with different values of Brinkman number. 

Where the asymptotic and downstream Nusselt number profiles are shown clearly for wall 

heating  0Br  . When wall cooling  0Br   is applied to reduce the bulk temperature of the 

fluid, as explained earlier, the amount of viscous dissipation may change the overall heat 

balance. With increasing value of Br in the negative direction, the Nusselt number reaches an 

asymptotic value. As noticed, when Br goes to infinity for either the wall heating or the wall 

cooling case, the Nusselt number reaches the same asymptotic value. This is due to the fact 
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that the heat generated internally by viscous dissipation processes will balance the effect of 

wall cooling. Generally, Nusselt number with viscous effects for both wall heating and wall 

cooling is less than Nusselt number for non viscous dissipation. 

 

 

 

 

 

 

 

 

 

Figure 3: Effects of power-law index on Nusselt number for different values of Brinkman 

number. 

While Figure 4 represents the variation of Nusselt number with the Brinkman number for 

constant heat flux case with different values of power law index (n). As shown, a singularity is 

observed at 0.5Br  . Actually, this is an expected result, when Eqn. (41) is closely examined. 

For the wall heating case, with the increasing value of Br , Nu decreases to reach constant 

values. This is because the temperature difference which drives the heat transfer decreases. At 

0.5Br  , the heat supplied by the wall into the fluid is balanced with the internal heat 

generation due to the viscous heating. For 0.5Br  , the internally generated heat by the 

viscous dissipation overcomes the wall heat. When 0.5Br  , Nu reaches an asymptotic value. 

Generally, Nusselt number Newtonian fluid is higher than those for pseudo- plastic and 

dilatants fluids. 
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Figure 4: Effects of Brinkman number on Nusselt number for different values of powerlaw 

index. 

4. CONCLUSION 

The forced convection heat transfer problem with viscous dissipation between two plates 

subjected to constant heat flux has been solved mathematically, which is a type of the Graetz 

problem. Completely analytical solutions for the fluid temperature and local Nusselt number 

 Nu  have been derived. The effects of the Brinkman number  Br  and rheological properties 

(power-law index) on the distribution of the local Nusselt number have been shown through 

numerical calculations. The following conclusions are drawn: 

 The local Nusselt number in the thermal region tends to increase with a decrease in the 

power-law model index (n). 

 It has been shown that viscous dissipation in the fluid can significantly influence laminar 

flow heat transfer. 

 With regard to the Graetz problem, the present analytical method can be applied to 

heat transfer not only in a channel between parallel plates but also in a concentric 

annulus; 

 It can also be applied to heat transfer in a channel with a moving wall because there is 

no restriction on the velocity distribution form of a fluid. 
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